

SYLLABUS

MATH 3073/32493. Linear Algebra, Summer 2019									
Department of		Mathemati	cs	College of	Arts and Sciences				
		•							
Instructor Name:		Manouchehr Misaghian, Ph. D.							
Office Location:		W.R. Banks	W.R. Banks 301 E						
Office Phone:		(936) 261-2	(936) 261-2090						
Fax:		936 261-20	936 261-2088						
Email Address:		mamisaghia	n@pvamu.edu						
Snail Mail (U.S.	Postal Se	rvice)	ice) Department of Mathematics						
Address:		,	Prairie View A&M University						
			P.O. Box 519						
			Mail Stop 2225						
			Prairie View.	TX 77446					
Office Hours:	By ann	ointment in a	dvance						
Virtual Office H	$\frac{125}{000000000000000000000000000000000000$	e-mail	u vunee						
Course Location	•	Banks Bldg 2	208						
Class Meeting D	avs & Ti	nes: M	TWR 11:00 am-	1.20 PM					
Course Abbrevis	ation and	Number [.]	Math 3073	3/32493					
Catalog Descript	tion Cr	edit (3-0) sem	ester hours I in	hear systems of ear	mations vectors matrices Matrix				
Cuturog Deserrip			ester nours. En	Algebra Determi	nants vector spaces and linear				
			transformations, and vector spaces with an inner product						
			transformations, and vector spaces with an inner product.						
Prerequisites	Consent	of instructor a	nd MATH 1124	or equivalent or					
1	Approva	l of the Mathe	matics Departme	ent					
Co-requisites	11		1						
Required	•	inear Algebra	with Application	ons. by JEFFREY	HOLT. 2 nd edition. Copyright © 2017.				
Text:		2013 by W. H.	Freeman and C	ompany, ISBN-1	3: 978-1-4641-9334-7.				
	•	Web Assign sr	bscription need	ed for HW auizz	es and other activities. You will be able				
	1	to access to the book through web assign							
	https://w	//www.webassion.net							
	Course	kev : pvamu 85	547 4869						
Recommended 7	Cexts: 1	Linear Algeb	ra: A Modern In	troduction By Da	vid Poole				
		6		Published by Br	poks/Cole, 2003				
				ISBN 05343417	48, 9780534341749				
				2. Linear Algebr	a: A Geometric Approach				
		By Ted Shifrin, Theodore Shifrin, Malcolm Adams							
		Published by W.H. Freeman, 2001							
		ISBN 071674337X, 9780716743378							
				3. Linear Algebr	a by Ben Woodruff. This book can be				
			downlo	baded from fol	lowing site for free:				
				http://cloud.gith	ub.com/downloads/jasongrout/linear-				
				algebra/linear-al	gebra_chapters1-2_git9e17b.pdf				
Access to Learning Resources: PVAMU Library:									

		phone: (936) 261-1500;			
		web: http://www.tamu.ed	lu/pyamu/library/		
		University Bookstore:			
	nhone: (936) 261-1990:				
		web: https://www.bkstr	com/Home/10001-1073	34-1?demoKev=d	
Соц	rse Goals or Overview:				
	Math 3073 is designed to	provide basic knowledge of eleme	entary linear algebra wi	th abstraction	
Cou	rse Objectives: At the end of t	his course the student should be a	ble (with at least 70% a	accuracy) to:	
	9	1. Solve linear systems of a	<i>m</i> equation in <i>n</i> unknow	vn.	
		2. Perform basic matrix op	erations		
		3. Perform algebraic matrix	x operations		
		4. Work with special types	of matrices including i	partitioned matrices	
		5. Reduce a matrix to Eche	elon form		
		6. Reduce a matrix to Redu	ice Row Echelon form		
		7. Compute inverse of a sq	uare matrix A (whenev	ver the inverse exists)	
		8. Determine equivalent m	atrices	,	
		9. Identify vector spaces an	nd subspaces		
		10. Determine whether a set	of vectors are linearly	independent or linearly	
		dependent.	•		
		11. Determine a basis for a	vector space		
		12. Determine the rank of a	matrix		
		13. Determine the dimension	n of a vector space		
		14. Determine isomorphic v	ector spaces		
		15. Define the standard inne	er product spaces		
		16. Apply the Gram-Schmic	lt process		
		17. Define a linear transform	nation of a vector space	e V into a vector space	
		W	-	-	
		18. Determine the Kernel of	a linear transformation	1	
		19. Determine the range of a	a linear transformation		
		20. Determine the matrix of	a linear transformation	l	
		21. Define the determinant of	of a square matrix		
		22. Apply Cramer's rule wh	enever possible		
		23. Diagonalize a matrix (w	henever possible)		
		24. Determine eigen values	and eigen vectors		
At t	he end of this course, the stud	ent will be able to:			
			1		
			Alignment with	Alignment with	
			Academic Program	Core Curriculum	
1	Solve linear systems of <i>m</i> equa	ation in <i>n</i> unknown,	#2	#2, #3	
	Perform basic matrix operation	ns			
	Perform algebraic matrix oper	ations			
2 Work with special types of matrices including partitioned			#3	#2, #3	
	matrices				
	Reduce a matrix to Echelon fo	rm			
Reduce a matrix to Reduce Row Echelon form					
	Compute inverse of a square n	natrix A (whenever the inverse			
	exists)				
-					
3	Determine equivalent matrices	3	#1	#2	
	Identify vector spaces and sub	spaces			
	Determine whether a set of ve	ctors are linearly independent or			
<u> </u>	linearly dependent				
4	Determine a basis for a vector	space	#3	#2	

	Determine the rank of a matrix Determine the dimension of a vector space		
5	Determine isomorphic vector spaces Define the standard inner product spaces Apply the Gram-Schmidt process	#2	#1, #2, #3
6	Define a linear transformation of a vector space V into a vector space W Determine the Kernel of a linear transformation Determine the range of a linear transformation Determine the matrix of a linear transformation	#3	#2
7	Define the determinant of a square matrix Apply Cramer's rule whenever possible Diagonalize a matrix (whenever possible) Determine eigen values and eigen vectors	#4	#2, #3

Course Evaluation Methods

This course will utilize the following instruments to determine student grades and proficiency of the learning outcomes for the course.

This course will utilize the following instruments to determine student grades and proficiency of the learning outcomes for the course.

Exams - written tests designed to measure knowledge of presented course material

Exercises – written assignments designed to supplement and reinforce course material

Class Participation – daily attendance and participation in class discussions.

Grading Matrix

Instrument	Value (points or percentages)	Total
Assignments	10 assignments at 20 points each	200
Tests, including Mid-Term	3 tests at 150 points each	450
Class Participation/ Discussion	50 points	50
Final Exam	300 points	300
Total:		1000

Grade Determination:

A = 1000 - 900 pts;B = 899 - 800 pts;C = 799 - 700 pts;D = 699 - 550 pts;F = 549 pts or below

Course Procedures

Submission of Assignments:

Formatting Documents:

Microsoft Word is the standard word processing tool used at PVAMU. If you're using other word processors, be sure to use the "save as" tool and save the document in either the Microsoft Word, Rich-Text, or plain text format. **Exam Policy**

Exams should be taken as scheduled. No makeup examinations will be allowed except under documented emergencies (See Student Handbook).

University Rules and Procedures

Disability statement (See Student Handbook):

Students with disabilities, including learning disabilities, who wish to request accommodations in class should register with the Services for Students with Disabilities (SSD) early in the semester so that appropriate arrangements may be made. In accordance with federal laws, a student requesting special accommodations must provide documentation of their disability to the SSD coordinator.

Academic misconduct (See Student Handbook):

You are expected to practice academic honesty in every aspect of this course and all other courses. Make sure you are familiar with your Student Handbook, especially the section on academic misconduct. Students who engage in academic misconduct are subject to university disciplinary procedures.

Forms of academic dishonesty:

- 1. Cheating: deception in which a student misrepresents that he/she has mastered information on an academic exercise that he/she has not mastered; giving or receiving aid unauthorized by the instructor on assignments or examinations.
- 2. Academic misconduct: tampering with grades or taking part in obtaining or distributing any part of a scheduled test.
- 3. Fabrication: use of invented information or falsified research.
- 4. Plagiarism: unacknowledged quotation and/or paraphrase of someone else's words, ideas, or data as one's own in work submitted for credit. Failure to identify information or essays from the Internet and submitting them as one's own work also constitutes plagiarism.

Nonacademic misconduct (See Student Handbook)

The university respects the rights of instructors to teach and students to learn. Maintenance of these rights requires campus conditions that do not impede their exercise. Campus behavior that interferes with either (1) the instructor's ability to conduct the class, (2) the inability of other students to profit from the instructional program, or (3) campus behavior that interferes with the rights of others will not be tolerated. An individual engaging in such disruptive behavior may be subject to disciplinary action. Such incidents will be adjudicated by the Dean of Students under nonacademic procedures.

Sexual misconduct (See Student Handbook):

Sexual harassment of students and employers at Prairie View A&M University is unacceptable and will not be tolerated. Any member of the university community violating this policy will be subject to disciplinary action.

Attendance Policy:

Prairie View A&M University requires regular class attendance. Excessive absences will result in lowered grades. Excessive absenteeism, whether excused or unexcused, may result in a student's course grade being reduced or in assignment of a grade of "F". Absences are accumulated beginning with the first day of class.

Student Academic Appeals Process

Authority and responsibility for assigning grades to students rests with the faculty. However, in those instances where students believe that miscommunication, errors, or unfairness of any kind may have adversely affected the instructor's assessment of their academic performance, the student has a right to appeal by the procedure listed in the Undergraduate Catalog and by doing so within thirty days of receiving the grade or experiencing any other problematic academic event that prompted the complaint.

Technical Considerations for Online and Web-Assist Courses

Minimum Hardware and Software Requirements:

-Pentium with Windows XP or PowerMac with OS 9
-56K modem or network access
-Internet provider with SLIP or PPP
-8X or greater CD-ROM
-64MB RAM
-Hard drive with 40MB available space
-15" monitor, 800x600, color or 16 bit
-Sound card w/speakers
-Microphone and recording software
-Keyboard & mouse
-Netscape Communicator ver. 4.61 or Microsoft Internet Explorer ver. 5.0 /plug-ins
-Participants should have a basic proficiency of the following computer skills:

Sending and receiving email
A working knowledge of the Internet
-Proficiency in Microsoft Word

- ·Proficiency in the Acrobat PDF Reader
- ·Basic knowledge of Windows or Mac O.S.

Netiquette (online etiquette): students are expected to participate in all discussions and virtual classroom chats when directed to do so. Students are to be respectful and courteous to others in the discussions. Foul or abusive language will not be tolerated. When referring to information from books, websites or articles, please use APA standards to reference sources.

Technical Support: Students should call the Prairie View A&M University Helpdesk at 936-261-2525 for technical issues with accessing your online course. The helpdesk is available 24 hours a day/7 days a week. For other technical questions regarding your online course, call the Office of Distance Learning at 936-261-3290 or 936-261-3282

Communication Expectations and Standards:

All emails or discussion postings will receive a response from the instructor within 48 hours.

You can send email anytime that is convenient to you, but I check my email messages continuously during the day throughout the work-week (Monday through Friday). I will respond to email messages during the work-week by the close of business (5:00 pm) on the day following <u>my receipt</u> of them. Emails that I receive on Friday will be responded to by the close of business on the following Monday.

Submission of Assignments:

Assignments, Papers, Exercises, and Projects will distributed and submitted through your online course. Directions for accessing your online course will be provided. Additional assistance can be obtained from the Office of Distance Learning.

Discussion Requirement:

Because this is an online course, there will be no required face to face meetings on campus. However, we will participate in conversations about the readings, lectures, materials, and other aspects of the course in a true seminar fashion. We will accomplish this by use of the discussion board.

Students are required to log-on to the course website often to participate in discussion. It is strongly advised that you check the discussion area daily to keep abreast of discussions. When a topic is posted, everyone is required to participate. The exact use of discussion will be determined by the instructor.

It is strongly suggested that students type their discussion postings in a word processing application and save it to their PC or a removable drive before posting to the discussion board. This is important for two reasons: 1) If for some reason your discussion responses are lost in your online course, you will have another copy; 2) Grammatical errors can be greatly minimized by the use of the spell-and-grammar check functions in word processing application, it should be copied and pasted to the discussion board.

Week	Topic	Section
1 &II		
Ch. 1	Systems of Linear Equations	
§§ 1.1,1.2	Solving Systems of Linear Equations	
	Systems of Linear Equations	
	Possibilities for Solution	
	Equivalent Systems and Equation Operations	
	Matrix and Vector Notation for Systems of Equations	
III, Ch. 2,	Euclidean space	
§§2.1-2.3	Vectors, Span, Linear Independence	
IV, Ch. 3,	Matrices	
§§3.1-3.4	Linear Transformations, Matrix Algebra, Inverses	
	LU Factorization	
V & VI	Subspaces	
Ch.4	Introduction to subspaces, Basis and Dimension, Row and column	
§§4.1-4.3	Spaces	
VII & VIII	Determinants	
Ch.5,	The Determinant Function	
§§ 5.1-5.3	Properties of Determinants	
	Applications of the Determinants	
IX & X	Eigenvalues and Eigenvectors	
Ch.6	Eigenvalues and Eigenvectors, Change of Basis, Diagonalization,	
§§6.1,	Complex Eigenvalues	
6.3-6.5	Review for Mid-Term Examination	
XI	Vector Spaces,	
Ch. 7	Vector Spaces and subspaces, Span and Linear Independence	
<u>§§7.1-7.3</u>	Basis and dimension	
XII & XIII	Orthogonality	
Ch.8	Dot products and Orthogonal Sets	
§ §8.1-8.3	Projection and the Gram-Schmidt Procedure.	
	Diagonalizing Symmetric Matrices and QR Factorization	
XIV & XV	Linear Transformations	
Ch. 9	Definition and properties, Isomorphism, The Matrix of a Linear	
§§9.1-9.4	Transformations, Similarity	
	Catch up and review for final	

TENTATIVE COURSE OUTLINE